Production of and research on medical radioisotopes at the Heavy Ion Laboratory, University of Warsaw

J. Jastrzębski1, J. Choiński1, A. Jakubowski1, M. Sitarz1,2, A. Stolarz1, K. Szkliniarz1, A. Trzcińska1, W. Zipper3

1 Heavy Ion Laboratory, University of Warsaw, Pasteura 5a, 02-093 Warszawa, Poland
2 Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warszawa, Poland
3 Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland

Irradiations & measurements

There are two cyclotrons at the Heavy Ion Laboratory used for the production of radioactive isotopes:

- **U-200P**
 - 2 - 10 AMeV
 - ¹⁰⁷He → ⁷²As
 - max. 1 µA internal beam

- **PETtrace**
 - 16 MeV
 - p - d
 - 0.5 - 4 µA external beam

Targets used at U-200P are prepared as pellets bonded in thin aluminium foil (Sc and Se/As production) or by direct melting into backing (At production). PETtrace targets are material pressed using a hydraulic press. Each target consists of the target enrichment. Yields of long-lived Tc isotopes, impossible to eliminate by chemistry, were calculated with EMPIRE evaporation code.

Proton energy [MeV]

- **TTY [MBq/µAh]**
 - ⁹⁹mTc: 150
 - ⁴⁴Sc: 0.02% EOB

6 h irradiation, 40 µA

- **Horizontal Impurities**
 - ⁹⁹mTc: 0.02% EOB

A EOB

- **Scandium-44m and scandium-44g with **⁴⁴Sc = three photon PET

The production of ⁴³Sc was investigated via the ⁴⁴Ca(α,p) using ⁴⁴Ca metal targets (96.9% ⁴⁴Ca in ⁴⁴Ca). The observed impurities level in the ⁴⁴Sc target was <0.05% of ⁴⁴Sc. The production route is extremely attractive. The enriched ⁴⁴CaCO₃ (99.99% ⁴⁴Ca) yields impurities lower than 10⁻⁶% for over 15 h after the EOB. Additionally, irradiating the ⁴⁴Ca metal with the α-beam of 25 µA (from commercially available cyclotron), a 14 GBq of ⁴⁴Sc at EOB could be produced after a 4 h irradiation.

Summary

The cyclotrons operating at the Heavy Ion Laboratory of the University of Warsaw have been extensively employed in recent years for the production of medical radioisotopes: ⁹⁹mTc, ⁷²Se/⁷²As, ²¹¹At, ⁴³Sc and ⁴⁴Sc. The intensity of a beam is sufficient for the production of research quantities of the studied radioisotopes, but yet a more intense beam would be needed for their production for clinical applications. An upgrade of the U-200P cyclotron is in preparatory phase.